Feat: RAPTOR handle cancel gracefully (#11074)

### What problem does this PR solve?

RAPTOR handle cancel gracefully.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
This commit is contained in:
Yongteng Lei
2025-11-06 17:18:03 +08:00
committed by GitHub
parent 3bd1fefe1f
commit 0cd8024c34
3 changed files with 41 additions and 12 deletions

View File

@ -20,7 +20,9 @@ import numpy as np
from sklearn.mixture import GaussianMixture
import trio
from api.db.services.task_service import has_canceled
from common.connection_utils import timeout
from common.exceptions import TaskCanceledException
from graphrag.utils import (
get_llm_cache,
get_embed_cache,
@ -75,18 +77,24 @@ class RecursiveAbstractiveProcessing4TreeOrganizedRetrieval:
await trio.to_thread.run_sync(lambda: set_embed_cache(self._embd_model.llm_name, txt, embds))
return embds
def _get_optimal_clusters(self, embeddings: np.ndarray, random_state: int):
def _get_optimal_clusters(self, embeddings: np.ndarray, random_state: int, task_id: str = ""):
max_clusters = min(self._max_cluster, len(embeddings))
n_clusters = np.arange(1, max_clusters)
bics = []
for n in n_clusters:
if task_id:
if has_canceled(task_id):
logging.info(f"Task {task_id} cancelled during get optimal clusters.")
raise TaskCanceledException(f"Task {task_id} was cancelled")
gm = GaussianMixture(n_components=n, random_state=random_state)
gm.fit(embeddings)
bics.append(gm.bic(embeddings))
optimal_clusters = n_clusters[np.argmin(bics)]
return optimal_clusters
async def __call__(self, chunks, random_state, callback=None):
async def __call__(self, chunks, random_state, callback=None, task_id: str = ""):
if len(chunks) <= 1:
return []
chunks = [(s, a) for s, a in chunks if s and len(a) > 0]
@ -96,6 +104,12 @@ class RecursiveAbstractiveProcessing4TreeOrganizedRetrieval:
@timeout(60*20)
async def summarize(ck_idx: list[int]):
nonlocal chunks
if task_id:
if has_canceled(task_id):
logging.info(f"Task {task_id} cancelled during RAPTOR summarization.")
raise TaskCanceledException(f"Task {task_id} was cancelled")
texts = [chunks[i][0] for i in ck_idx]
len_per_chunk = int(
(self._llm_model.max_length - self._max_token) / len(texts)
@ -104,6 +118,11 @@ class RecursiveAbstractiveProcessing4TreeOrganizedRetrieval:
[truncate(t, max(1, len_per_chunk)) for t in texts]
)
async with chat_limiter:
if task_id and has_canceled(task_id):
logging.info(f"Task {task_id} cancelled before RAPTOR LLM call.")
raise TaskCanceledException(f"Task {task_id} was cancelled")
cnt = await self._chat(
"You're a helpful assistant.",
[
@ -122,11 +141,22 @@ class RecursiveAbstractiveProcessing4TreeOrganizedRetrieval:
cnt,
)
logging.debug(f"SUM: {cnt}")
if task_id and has_canceled(task_id):
logging.info(f"Task {task_id} cancelled before RAPTOR embedding.")
raise TaskCanceledException(f"Task {task_id} was cancelled")
embds = await self._embedding_encode(cnt)
chunks.append((cnt, embds))
labels = []
while end - start > 1:
if task_id:
if has_canceled(task_id):
logging.info(f"Task {task_id} cancelled during RAPTOR layer processing.")
raise TaskCanceledException(f"Task {task_id} was cancelled")
embeddings = [embd for _, embd in chunks[start:end]]
if len(embeddings) == 2:
await summarize([start, start + 1])
@ -148,7 +178,7 @@ class RecursiveAbstractiveProcessing4TreeOrganizedRetrieval:
n_components=min(12, len(embeddings) - 2),
metric="cosine",
).fit_transform(embeddings)
n_clusters = self._get_optimal_clusters(reduced_embeddings, random_state)
n_clusters = self._get_optimal_clusters(reduced_embeddings, random_state, task_id=task_id)
if n_clusters == 1:
lbls = [0 for _ in range(len(reduced_embeddings))]
else:
@ -162,6 +192,11 @@ class RecursiveAbstractiveProcessing4TreeOrganizedRetrieval:
for c in range(n_clusters):
ck_idx = [i + start for i in range(len(lbls)) if lbls[i] == c]
assert len(ck_idx) > 0
if task_id and has_canceled(task_id):
logging.info(f"Task {task_id} cancelled before RAPTOR cluster processing.")
raise TaskCanceledException(f"Task {task_id} was cancelled")
nursery.start_soon(summarize, ck_idx)
assert len(chunks) - end == n_clusters, "{} vs. {}".format(