mirror of
https://github.com/infiniflow/ragflow.git
synced 2025-12-08 20:42:30 +08:00
Reuse loaded modules if possible (#5231)
### What problem does this PR solve? Reuse loaded modules if possible ### Type of change - [x] Refactoring
This commit is contained in:
@ -31,6 +31,7 @@ import onnxruntime as ort
|
||||
|
||||
from .postprocess import build_post_process
|
||||
|
||||
loaded_models = {}
|
||||
|
||||
def transform(data, ops=None):
|
||||
""" transform """
|
||||
@ -67,6 +68,12 @@ def create_operators(op_param_list, global_config=None):
|
||||
|
||||
def load_model(model_dir, nm):
|
||||
model_file_path = os.path.join(model_dir, nm + ".onnx")
|
||||
global loaded_models
|
||||
loaded_model = loaded_models.get(model_file_path)
|
||||
if loaded_model:
|
||||
logging.info(f"load_model {model_file_path} reuses cached model")
|
||||
return loaded_model
|
||||
|
||||
if not os.path.exists(model_file_path):
|
||||
raise ValueError("not find model file path {}".format(
|
||||
model_file_path))
|
||||
@ -102,15 +109,17 @@ def load_model(model_dir, nm):
|
||||
provider_options=[cuda_provider_options]
|
||||
)
|
||||
run_options.add_run_config_entry("memory.enable_memory_arena_shrinkage", "gpu:0")
|
||||
logging.info(f"TextRecognizer {nm} uses GPU")
|
||||
logging.info(f"load_model {model_file_path} uses GPU")
|
||||
else:
|
||||
sess = ort.InferenceSession(
|
||||
model_file_path,
|
||||
options=options,
|
||||
providers=['CPUExecutionProvider'])
|
||||
run_options.add_run_config_entry("memory.enable_memory_arena_shrinkage", "cpu")
|
||||
logging.info(f"TextRecognizer {nm} uses CPU")
|
||||
return sess, sess.get_inputs()[0], run_options
|
||||
logging.info(f"load_model {model_file_path} uses CPU")
|
||||
loaded_model = (sess, run_options)
|
||||
loaded_models[model_file_path] = loaded_model
|
||||
return loaded_model
|
||||
|
||||
|
||||
class TextRecognizer(object):
|
||||
@ -123,7 +132,8 @@ class TextRecognizer(object):
|
||||
"use_space_char": True
|
||||
}
|
||||
self.postprocess_op = build_post_process(postprocess_params)
|
||||
self.predictor, self.input_tensor, self.run_options = load_model(model_dir, 'rec')
|
||||
self.predictor, self.run_options = load_model(model_dir, 'rec')
|
||||
self.input_tensor = self.predictor.get_inputs()[0]
|
||||
|
||||
def resize_norm_img(self, img, max_wh_ratio):
|
||||
imgC, imgH, imgW = self.rec_image_shape
|
||||
@ -408,7 +418,8 @@ class TextDetector(object):
|
||||
"unclip_ratio": 1.5, "use_dilation": False, "score_mode": "fast", "box_type": "quad"}
|
||||
|
||||
self.postprocess_op = build_post_process(postprocess_params)
|
||||
self.predictor, self.input_tensor, self.run_options = load_model(model_dir, 'det')
|
||||
self.predictor, self.run_options = load_model(model_dir, 'det')
|
||||
self.input_tensor = self.predictor.get_inputs()[0]
|
||||
|
||||
img_h, img_w = self.input_tensor.shape[2:]
|
||||
if isinstance(img_h, str) or isinstance(img_w, str):
|
||||
|
||||
Reference in New Issue
Block a user