40 lines
1.6 KiB
Python
40 lines
1.6 KiB
Python
import torch
|
|
from transformers import LogitsProcessor
|
|
from transformers.generation.logits_process import _calc_banned_ngram_tokens
|
|
from typing import List, Set
|
|
|
|
|
|
class NoRepeatNGramLogitsProcessor(LogitsProcessor):
|
|
|
|
def __init__(self, ngram_size: int, window_size: int = 100, whitelist_token_ids: set = None):
|
|
if not isinstance(ngram_size, int) or ngram_size <= 0:
|
|
raise ValueError(f"`ngram_size` has to be a strictly positive integer, but is {ngram_size}")
|
|
if not isinstance(window_size, int) or window_size <= 0:
|
|
raise ValueError(f"`window_size` has to be a strictly positive integer, but is {window_size}")
|
|
self.ngram_size = ngram_size
|
|
self.window_size = window_size
|
|
self.whitelist_token_ids = whitelist_token_ids or set()
|
|
|
|
def __call__(self, input_ids: List[int], scores: torch.FloatTensor) -> torch.FloatTensor:
|
|
if len(input_ids) < self.ngram_size:
|
|
return scores
|
|
|
|
current_prefix = tuple(input_ids[-(self.ngram_size - 1):])
|
|
|
|
search_start = max(0, len(input_ids) - self.window_size)
|
|
search_end = len(input_ids) - self.ngram_size + 1
|
|
|
|
banned_tokens = set()
|
|
for i in range(search_start, search_end):
|
|
ngram = tuple(input_ids[i:i + self.ngram_size])
|
|
if ngram[:-1] == current_prefix:
|
|
banned_tokens.add(ngram[-1])
|
|
|
|
banned_tokens = banned_tokens - self.whitelist_token_ids
|
|
|
|
if banned_tokens:
|
|
scores = scores.clone()
|
|
for token in banned_tokens:
|
|
scores[token] = -float("inf")
|
|
|
|
return scores |