503 lines
20 KiB
Python
503 lines
20 KiB
Python
import math
|
||
from typing import List, Tuple
|
||
|
||
import torch
|
||
import torchvision.transforms as T
|
||
from PIL import Image, ImageOps
|
||
from transformers import AutoProcessor, BatchFeature, LlamaTokenizerFast
|
||
from transformers.processing_utils import ProcessorMixin
|
||
from config import IMAGE_SIZE, BASE_SIZE, CROP_MODE, MIN_CROPS, MAX_CROPS, PROMPT, TOKENIZER
|
||
|
||
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
|
||
best_ratio_diff = float('inf')
|
||
best_ratio = (1, 1)
|
||
area = width * height
|
||
for ratio in target_ratios:
|
||
target_aspect_ratio = ratio[0] / ratio[1]
|
||
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
|
||
if ratio_diff < best_ratio_diff:
|
||
best_ratio_diff = ratio_diff
|
||
best_ratio = ratio
|
||
elif ratio_diff == best_ratio_diff:
|
||
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
|
||
best_ratio = ratio
|
||
# print(f'width: {width}, height: {height}, best_ratio: {best_ratio}')
|
||
return best_ratio
|
||
|
||
|
||
def count_tiles(orig_width, orig_height, min_num=MIN_CROPS, max_num=MAX_CROPS, image_size=640, use_thumbnail=False):
|
||
aspect_ratio = orig_width / orig_height
|
||
|
||
# calculate the existing image aspect ratio
|
||
target_ratios = set(
|
||
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
|
||
i * j <= max_num and i * j >= min_num)
|
||
# print(target_ratios)
|
||
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
|
||
|
||
# find the closest aspect ratio to the target
|
||
target_aspect_ratio = find_closest_aspect_ratio(
|
||
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
|
||
|
||
return target_aspect_ratio
|
||
|
||
|
||
def dynamic_preprocess(image, min_num=MIN_CROPS, max_num=MAX_CROPS, image_size=640, use_thumbnail=False):
|
||
orig_width, orig_height = image.size
|
||
aspect_ratio = orig_width / orig_height
|
||
|
||
# calculate the existing image aspect ratio
|
||
target_ratios = set(
|
||
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
|
||
i * j <= max_num and i * j >= min_num)
|
||
# print(target_ratios)
|
||
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
|
||
|
||
# find the closest aspect ratio to the target
|
||
target_aspect_ratio = find_closest_aspect_ratio(
|
||
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
|
||
|
||
# print(target_aspect_ratio)
|
||
# calculate the target width and height
|
||
target_width = image_size * target_aspect_ratio[0]
|
||
target_height = image_size * target_aspect_ratio[1]
|
||
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
|
||
|
||
# resize the image
|
||
resized_img = image.resize((target_width, target_height))
|
||
processed_images = []
|
||
for i in range(blocks):
|
||
box = (
|
||
(i % (target_width // image_size)) * image_size,
|
||
(i // (target_width // image_size)) * image_size,
|
||
((i % (target_width // image_size)) + 1) * image_size,
|
||
((i // (target_width // image_size)) + 1) * image_size
|
||
)
|
||
# split the image
|
||
split_img = resized_img.crop(box)
|
||
processed_images.append(split_img)
|
||
assert len(processed_images) == blocks
|
||
if use_thumbnail and len(processed_images) != 1:
|
||
thumbnail_img = image.resize((image_size, image_size))
|
||
processed_images.append(thumbnail_img)
|
||
return processed_images, target_aspect_ratio
|
||
|
||
|
||
|
||
|
||
|
||
class ImageTransform:
|
||
|
||
def __init__(self,
|
||
mean: Tuple[float, float, float] = (0.5, 0.5, 0.5),
|
||
std: Tuple[float, float, float] = (0.5, 0.5, 0.5),
|
||
normalize: bool = True):
|
||
self.mean = mean
|
||
self.std = std
|
||
self.normalize = normalize
|
||
|
||
transform_pipelines = [T.ToTensor()]
|
||
|
||
if normalize:
|
||
transform_pipelines.append(T.Normalize(mean, std))
|
||
|
||
self.transform = T.Compose(transform_pipelines)
|
||
|
||
def __call__(self, pil_img: Image.Image):
|
||
x = self.transform(pil_img)
|
||
return x
|
||
|
||
|
||
class DeepseekOCRProcessor(ProcessorMixin):
|
||
tokenizer_class = ("LlamaTokenizer", "LlamaTokenizerFast")
|
||
attributes = ["tokenizer"]
|
||
|
||
def __init__(
|
||
self,
|
||
tokenizer: LlamaTokenizerFast = TOKENIZER,
|
||
candidate_resolutions: Tuple[Tuple[int, int]] = [[1024, 1024]],
|
||
patch_size: int = 16,
|
||
downsample_ratio: int = 4,
|
||
image_mean: Tuple[float, float, float] = (0.5, 0.5, 0.5),
|
||
image_std: Tuple[float, float, float] = (0.5, 0.5, 0.5),
|
||
normalize: bool = True,
|
||
image_token: str = "<image>",
|
||
pad_token: str = "<|▁pad▁|>",
|
||
add_special_token: bool = False,
|
||
sft_format: str = "deepseek",
|
||
mask_prompt: bool = True,
|
||
ignore_id: int = -100,
|
||
**kwargs,
|
||
):
|
||
|
||
# self.candidate_resolutions = candidate_resolutions # placeholder no use
|
||
self.image_size = IMAGE_SIZE
|
||
self.base_size = BASE_SIZE
|
||
# self.patch_size = patch_size
|
||
self.patch_size = 16
|
||
self.image_mean = image_mean
|
||
self.image_std = image_std
|
||
self.normalize = normalize
|
||
# self.downsample_ratio = downsample_ratio
|
||
self.downsample_ratio = 4
|
||
|
||
self.image_transform = ImageTransform(mean=image_mean, std=image_std, normalize=normalize)
|
||
|
||
|
||
self.tokenizer = tokenizer
|
||
# self.tokenizer = add_special_token(tokenizer)
|
||
self.tokenizer.padding_side = 'left' # must set this,padding side with make a difference in batch inference
|
||
|
||
# add the pad_token as special token to use 'tokenizer.pad_token' and 'tokenizer.pad_token_id'
|
||
if self.tokenizer.pad_token is None:
|
||
self.tokenizer.add_special_tokens({'pad_token': pad_token})
|
||
|
||
# add image token
|
||
# image_token_id = self.tokenizer.vocab.get(image_token)
|
||
# if image_token_id is None:
|
||
# special_tokens = [image_token]
|
||
# special_tokens_dict = {"additional_special_tokens": special_tokens}
|
||
# self.tokenizer.add_special_tokens(special_tokens_dict)
|
||
self.image_token_id = self.tokenizer.vocab.get(image_token)
|
||
|
||
# add five special tokens for grounding-related tasks
|
||
# <|ref|>, <|/ref|>, <|det|>, <|/det|>, <|grounding|>
|
||
# special_tokens = ['<|ref|>', '<|/ref|>', '<|det|>', '<|/det|>', '<|grounding|>']
|
||
# special_tokens_dict = {"additional_special_tokens": special_tokens}
|
||
|
||
# special_tokens = ['<image>','<|ref|>', '<|/ref|>', '<|det|>', '<|/det|>', '<|grounding|>', '<td>', '</td>', '<tr>', '</tr>']
|
||
# special_tokens_dict = {"additional_special_tokens": special_tokens}
|
||
# self.tokenizer.add_special_tokens(special_tokens_dict)
|
||
|
||
# # add special tokens for SFT data
|
||
# special_tokens = ["<|User|>", "<|Assistant|>"]
|
||
# special_tokens_dict = {"additional_special_tokens": special_tokens}
|
||
# self.tokenizer.add_special_tokens(special_tokens_dict)
|
||
|
||
self.image_token = image_token
|
||
self.pad_token = pad_token
|
||
self.add_special_token = add_special_token
|
||
self.sft_format = sft_format
|
||
self.mask_prompt = mask_prompt
|
||
self.ignore_id = ignore_id
|
||
|
||
super().__init__(
|
||
tokenizer,
|
||
**kwargs,
|
||
)
|
||
|
||
|
||
|
||
|
||
# def select_best_resolution(self, image_size):
|
||
# # used for cropping
|
||
# original_width, original_height = image_size
|
||
# best_fit = None
|
||
# max_effective_resolution = 0
|
||
# min_wasted_resolution = float("inf")
|
||
|
||
# for width, height in self.candidate_resolutions:
|
||
# scale = min(width / original_width, height / original_height)
|
||
# downscaled_width, downscaled_height = int(
|
||
# original_width * scale), int(original_height * scale)
|
||
# effective_resolution = min(downscaled_width * downscaled_height,
|
||
# original_width * original_height)
|
||
# wasted_resolution = (width * height) - effective_resolution
|
||
|
||
# if effective_resolution > max_effective_resolution or (
|
||
# effective_resolution == max_effective_resolution
|
||
# and wasted_resolution < min_wasted_resolution):
|
||
# max_effective_resolution = effective_resolution
|
||
# min_wasted_resolution = wasted_resolution
|
||
# best_fit = (width, height)
|
||
|
||
# return best_fit
|
||
|
||
@property
|
||
def bos_id(self):
|
||
return self.tokenizer.bos_token_id
|
||
|
||
@property
|
||
def eos_id(self):
|
||
return self.tokenizer.eos_token_id
|
||
|
||
@property
|
||
def pad_id(self):
|
||
return self.tokenizer.pad_token_id
|
||
|
||
def encode(self, text: str, bos: bool = True, eos: bool = False):
|
||
t = self.tokenizer.encode(text, add_special_tokens=False)
|
||
|
||
if bos:
|
||
t = [self.bos_id] + t
|
||
if eos:
|
||
t = t + [self.eos_id]
|
||
|
||
return t
|
||
|
||
def decode(self, t: List[int], **kwargs) -> str:
|
||
return self.tokenizer.decode(t, **kwargs)
|
||
|
||
def process_one(
|
||
self,
|
||
prompt: str,
|
||
images: List,
|
||
inference_mode: bool = True,
|
||
**kwargs,
|
||
):
|
||
"""
|
||
|
||
Args:
|
||
prompt (str): the formatted prompt;
|
||
conversations (List[Dict]): conversations with a list of messages;
|
||
images (List[ImageType]): the list of images;
|
||
inference_mode (bool): if True, then remove the last eos token;
|
||
system_prompt (str): the system prompt;
|
||
**kwargs:
|
||
|
||
Returns:
|
||
outputs (BaseProcessorOutput): the output of the processor,
|
||
- input_ids (torch.LongTensor): [N + image tokens]
|
||
- target_ids (torch.LongTensor): [N + image tokens]
|
||
- pixel_values (torch.FloatTensor): [n_patches, 3, H, W]
|
||
- image_id (int): the id of the image token
|
||
- num_image_tokens (List[int]): the number of image tokens
|
||
"""
|
||
|
||
assert (prompt is not None and images is not None
|
||
), "prompt and images must be used at the same time."
|
||
|
||
sft_format = prompt
|
||
|
||
input_ids, pixel_values, images_crop, images_seq_mask, images_spatial_crop, num_image_tokens, _ = images[0]
|
||
|
||
|
||
return {
|
||
"input_ids": input_ids,
|
||
"pixel_values": pixel_values,
|
||
"images_crop": images_crop,
|
||
"images_seq_mask": images_seq_mask,
|
||
"images_spatial_crop": images_spatial_crop,
|
||
"num_image_tokens": num_image_tokens,
|
||
}
|
||
|
||
|
||
# prepare = BatchFeature(
|
||
# data=dict(
|
||
# input_ids=input_ids,
|
||
# pixel_values=pixel_values,
|
||
# images_crop = images_crop,
|
||
# images_seq_mask=images_seq_mask,
|
||
# images_spatial_crop=images_spatial_crop,
|
||
# num_image_tokens=num_image_tokens,
|
||
# ),
|
||
# tensor_type="pt",
|
||
# )
|
||
# return prepare
|
||
|
||
def __call__(
|
||
self,
|
||
*,
|
||
prompt: str,
|
||
images: List,
|
||
inference_mode: bool = True,
|
||
**kwargs,
|
||
):
|
||
"""
|
||
|
||
Args:
|
||
prompt (str): the formatted prompt;
|
||
images (List[ImageType]): the list of images;
|
||
inference_mode (bool): if True, then remove the last eos token;
|
||
**kwargs:
|
||
|
||
Returns:
|
||
outputs (BaseProcessorOutput): the output of the processor,
|
||
- input_ids (torch.LongTensor): [N + image tokens]
|
||
- images (torch.FloatTensor): [n_images, 3, H, W]
|
||
- image_id (int): the id of the image token
|
||
- num_image_tokens (List[int]): the number of image tokens
|
||
"""
|
||
|
||
prepare = self.process_one(
|
||
prompt=prompt,
|
||
images=images,
|
||
inference_mode=inference_mode,
|
||
)
|
||
|
||
return prepare
|
||
|
||
def tokenize_with_images(
|
||
self,
|
||
# conversation: str,
|
||
images: List[Image.Image],
|
||
bos: bool = True,
|
||
eos: bool = True,
|
||
cropping: bool = True,
|
||
):
|
||
"""Tokenize text with <image> tags."""
|
||
|
||
# print(conversation)
|
||
conversation = PROMPT
|
||
assert conversation.count(self.image_token) == len(images)
|
||
text_splits = conversation.split(self.image_token)
|
||
images_list, images_crop_list, images_seq_mask, images_spatial_crop = [], [], [], []
|
||
image_shapes = []
|
||
num_image_tokens = []
|
||
tokenized_str = []
|
||
# print('image: ', len(images))
|
||
for text_sep, image in zip(text_splits, images):
|
||
"""encode text_sep"""
|
||
tokenized_sep = self.encode(text_sep, bos=False, eos=False)
|
||
tokenized_str += tokenized_sep
|
||
images_seq_mask += [False] * len(tokenized_sep)
|
||
|
||
"""select best resolution for anyres"""
|
||
# if cropping:
|
||
# best_width, best_height = self.select_best_resolution(image.size)
|
||
# else:
|
||
# best_width, best_height = self.image_size, self.image_size
|
||
|
||
image_shapes.append(image.size)
|
||
|
||
if image.size[0] <= 640 and image.size[1] <= 640:
|
||
crop_ratio = [1, 1]
|
||
else:
|
||
if cropping:
|
||
# print('image-size: ', image.size)
|
||
# best_width, best_height = select_best_resolution(image.size, self.candidate_resolutions)
|
||
# print('image ', image.size)
|
||
# print('open_size:', image.size)
|
||
images_crop_raw, crop_ratio = dynamic_preprocess(image, image_size=IMAGE_SIZE)
|
||
# print('crop_ratio: ', crop_ratio)
|
||
else:
|
||
# best_width, best_height = self.image_size, self.image_size
|
||
crop_ratio = [1, 1]
|
||
# print(image.size, (best_width, best_height)) # check the select_best_resolutions func
|
||
|
||
# print(crop_ratio)
|
||
"""process the global view"""
|
||
|
||
# if cropping
|
||
if self.image_size <= 640 and not cropping:
|
||
# print('directly resize')
|
||
image = image.resize((self.image_size, self.image_size))
|
||
|
||
global_view = ImageOps.pad(image, (self.base_size, self.base_size),
|
||
color=tuple(int(x * 255) for x in self.image_transform.mean))
|
||
images_list.append(self.image_transform(global_view))
|
||
|
||
"""record height / width crop num"""
|
||
# width_crop_num, height_crop_num = best_width // self.image_size, best_height // self.image_size
|
||
num_width_tiles, num_height_tiles = crop_ratio
|
||
images_spatial_crop.append([num_width_tiles, num_height_tiles])
|
||
|
||
|
||
|
||
|
||
if num_width_tiles > 1 or num_height_tiles > 1:
|
||
"""process the local views"""
|
||
# local_view = ImageOps.pad(image, (best_width, best_height),
|
||
# color=tuple(int(x * 255) for x in self.image_transform.mean))
|
||
# for i in range(0, best_height, self.image_size):
|
||
# for j in range(0, best_width, self.image_size):
|
||
# images_crop_list.append(
|
||
# self.image_transform(local_view.crop((j, i, j + self.image_size, i + self.image_size))))
|
||
for i in range(len(images_crop_raw)):
|
||
images_crop_list.append(self.image_transform(images_crop_raw[i]))
|
||
|
||
# """process the global view"""
|
||
# global_view = ImageOps.pad(image, (self.image_size, self.image_size),
|
||
# color=tuple(int(x * 255) for x in self.image_transform.mean))
|
||
# images_list.append(self.image_transform(global_view))
|
||
|
||
# """process the local views"""
|
||
# local_view = ImageOps.pad(image, (best_width, best_height),
|
||
# color=tuple(int(x * 255) for x in self.image_transform.mean))
|
||
# for i in range(0, best_height, self.image_size):
|
||
# for j in range(0, best_width, self.image_size):
|
||
# images_list.append(
|
||
# self.image_transform(local_view.crop((j, i, j + self.image_size, i + self.image_size))))
|
||
|
||
# """add image tokens"""
|
||
"""add image tokens"""
|
||
num_queries = math.ceil((self.image_size // self.patch_size) / self.downsample_ratio)
|
||
num_queries_base = math.ceil((self.base_size // self.patch_size) / self.downsample_ratio)
|
||
|
||
|
||
tokenized_image = ([self.image_token_id] * num_queries_base + [self.image_token_id]) * num_queries_base
|
||
tokenized_image += [self.image_token_id]
|
||
if num_width_tiles > 1 or num_height_tiles > 1:
|
||
tokenized_image += ([self.image_token_id] * (num_queries * num_width_tiles) + [self.image_token_id]) * (
|
||
num_queries * num_height_tiles)
|
||
tokenized_str += tokenized_image
|
||
images_seq_mask += [True] * len(tokenized_image)
|
||
num_image_tokens.append(len(tokenized_image))
|
||
|
||
"""process the last text split"""
|
||
tokenized_sep = self.encode(text_splits[-1], bos=False, eos=False)
|
||
tokenized_str += tokenized_sep
|
||
images_seq_mask += [False] * len(tokenized_sep)
|
||
|
||
"""add the bos and eos tokens"""
|
||
if bos:
|
||
tokenized_str = [self.bos_id] + tokenized_str
|
||
images_seq_mask = [False] + images_seq_mask
|
||
if eos:
|
||
tokenized_str = tokenized_str + [self.eos_id]
|
||
images_seq_mask = images_seq_mask + [False]
|
||
|
||
assert len(tokenized_str) == len(
|
||
images_seq_mask), f"tokenize_with_images func: tokenized_str's length {len(tokenized_str)} is not equal to imags_seq_mask's length {len(images_seq_mask)}"
|
||
|
||
|
||
|
||
masked_tokenized_str = []
|
||
for token_index in tokenized_str:
|
||
if token_index != self.image_token_id:
|
||
masked_tokenized_str.append(token_index)
|
||
else:
|
||
masked_tokenized_str.append(self.ignore_id)
|
||
|
||
assert len(tokenized_str) == len(images_seq_mask) == len(masked_tokenized_str), \
|
||
(f"tokenized_str's length {len(tokenized_str)}, input_ids' length {len(masked_tokenized_str)}, "
|
||
f"imags_seq_mask's length {len(images_seq_mask)}, are not equal")
|
||
|
||
input_ids = torch.LongTensor(tokenized_str)
|
||
target_ids = torch.LongTensor(masked_tokenized_str)
|
||
images_seq_mask = torch.tensor(images_seq_mask, dtype=torch.bool)
|
||
|
||
# set input_ids < 0 | input_ids == self.image_token_id as ignore_id
|
||
target_ids[(input_ids < 0) |
|
||
(input_ids == self.image_token_id)] = self.ignore_id
|
||
input_ids[input_ids < 0] = self.pad_id
|
||
|
||
inference_mode = True
|
||
|
||
if inference_mode:
|
||
# Remove the ending eos token
|
||
assert input_ids[-1] == self.eos_id
|
||
input_ids = input_ids[:-1]
|
||
target_ids = target_ids[:-1]
|
||
images_seq_mask = images_seq_mask[:-1]
|
||
|
||
if len(images_list) == 0:
|
||
pixel_values = torch.zeros((1, 3, self.base_size, self.base_size))
|
||
images_spatial_crop = torch.zeros((1, 1), dtype=torch.long)
|
||
images_crop = torch.zeros((1, 3, self.image_size, self.image_size)).unsqueeze(0)
|
||
else:
|
||
pixel_values = torch.stack(images_list, dim=0)
|
||
images_spatial_crop = torch.tensor(images_spatial_crop, dtype=torch.long)
|
||
if images_crop_list:
|
||
images_crop = torch.stack(images_crop_list, dim=0).unsqueeze(0)
|
||
else:
|
||
images_crop = torch.zeros((1, 3, self.image_size, self.image_size)).unsqueeze(0)
|
||
|
||
input_ids = input_ids.unsqueeze(0)
|
||
|
||
|
||
return [[input_ids, pixel_values, images_crop, images_seq_mask, images_spatial_crop, num_image_tokens, image_shapes]]
|
||
|
||
|
||
AutoProcessor.register("DeepseekVLV2Processor", DeepseekOCRProcessor)
|