505 lines
16 KiB
Python
505 lines
16 KiB
Python
from contextlib import nullcontext
|
||
import math
|
||
from typing import Optional, Tuple
|
||
# from megatron.model import LayerNorm
|
||
from easydict import EasyDict as adict
|
||
import torch
|
||
from torch.nn import functional as F
|
||
from torch import nn
|
||
from flash_attn import flash_attn_qkvpacked_func, flash_attn_func
|
||
# from optimus import flash_attn_func
|
||
# from megatron.core import tensor_parallel
|
||
# from megatron.core import parallel_state as mpu
|
||
# from megatron.core.utils import make_viewless_tensor, divide
|
||
# from megatron.model.fused_rms_norm import RMSNorm
|
||
# from megatron.model.transformer import (
|
||
# FlashSelfAttention,
|
||
# NoopTransformerLayer,
|
||
# _cfg_to_kwargs,
|
||
# )
|
||
# from megatron.model.enums import AttnMaskType, AttnType
|
||
# from megatron.model.fused_softmax import FusedScaleMaskSoftmax
|
||
# from megatron.model.utils import attention_mask_func
|
||
|
||
# from megatron.model.module import MegatronModule
|
||
|
||
# try:
|
||
# from einops import rearrange
|
||
# except ImportError:
|
||
# rearrange = None
|
||
|
||
# from flash_attn import flash_attn_varlen_func as flash_attn_unpadded_func
|
||
|
||
# try:
|
||
# # flash attention 2.x
|
||
# from flash_attn import flash_attn_varlen_func as flash_attn_unpadded_func
|
||
# except ImportError:
|
||
# try:
|
||
# # flash attention 1.x
|
||
# from flash_attn.flash_attn_interface import flash_attn_unpadded_func
|
||
# except ImportError:
|
||
# flash_attn_unpadded_func = None
|
||
|
||
# try:
|
||
# from flash_attn.flash_attn_interface import flash_attn_unpadded_relative_attention_bias_func
|
||
# except ImportError:
|
||
# flash_attn_unpadded_relative_attention_bias_func = None
|
||
|
||
# try:
|
||
# from flash_attn.flash_attn_interface import mask_flash_attn_unpadded_func
|
||
# except ImportError:
|
||
# mask_flash_attn_unpadded_func = None
|
||
|
||
|
||
class LayerNormfp32(torch.nn.LayerNorm):
|
||
"""Subclass torch's LayerNorm to handle fp16."""
|
||
|
||
def forward(self, x: torch.Tensor):
|
||
orig_type = x.dtype
|
||
ret = super().forward(x.type(torch.float32))
|
||
return ret.type(orig_type)
|
||
|
||
|
||
def get_abs_pos(abs_pos, tgt_size):
|
||
# abs_pos: L, C
|
||
# tgt_size: M
|
||
# return: M, C
|
||
|
||
# print(tgt_size)
|
||
# print(abs_pos.shape)
|
||
# exit()
|
||
dim = abs_pos.size(-1)
|
||
# print(dim)
|
||
abs_pos_new = abs_pos.squeeze(0)
|
||
cls_token, old_pos_embed = abs_pos_new[:1], abs_pos_new[1:]
|
||
|
||
|
||
|
||
src_size = int(math.sqrt(abs_pos_new.shape[0] - 1))
|
||
tgt_size = int(math.sqrt(tgt_size))
|
||
dtype = abs_pos.dtype
|
||
|
||
if src_size != tgt_size:
|
||
old_pos_embed = old_pos_embed.view(1, src_size, src_size, dim).permute(0, 3, 1,
|
||
2).contiguous()
|
||
old_pos_embed = old_pos_embed.to(torch.float32)
|
||
new_pos_embed = F.interpolate(
|
||
old_pos_embed,
|
||
size=(tgt_size, tgt_size),
|
||
mode='bicubic',
|
||
antialias=True,
|
||
align_corners=False,
|
||
).to(dtype)
|
||
new_pos_embed = new_pos_embed.permute(0, 2, 3, 1)
|
||
new_pos_embed = new_pos_embed.view(tgt_size * tgt_size, dim)
|
||
vision_pos_embed = torch.cat([cls_token, new_pos_embed], dim=0)
|
||
vision_pos_embed = vision_pos_embed.view(1, tgt_size * tgt_size + 1, dim)
|
||
return vision_pos_embed
|
||
else:
|
||
return abs_pos
|
||
|
||
@torch.jit.script
|
||
def quick_gelu(x):
|
||
return x * torch.sigmoid(1.702 * x)
|
||
|
||
|
||
|
||
class CLIPVisionEmbeddings(nn.Module):
|
||
def __init__(self, hidden_size=1024, image_size=224, patch_size=14, num_channels=3):
|
||
super().__init__()
|
||
self.embed_dim = hidden_size
|
||
self.image_size = image_size
|
||
self.patch_size = patch_size
|
||
|
||
self.class_embedding = torch.nn.Parameter(torch.randn(self.embed_dim))
|
||
|
||
self.patch_embedding = torch.nn.Conv2d(
|
||
in_channels=num_channels,
|
||
out_channels=self.embed_dim,
|
||
kernel_size=self.patch_size,
|
||
stride=self.patch_size,
|
||
bias=False,
|
||
)
|
||
|
||
self.num_patches = (self.image_size // self.patch_size) ** 2
|
||
self.num_positions = self.num_patches + 1
|
||
self.position_embedding = torch.nn.Embedding(self.num_positions, self.embed_dim)
|
||
self.register_buffer(
|
||
"position_ids", torch.arange(self.num_positions).expand((1, -1))
|
||
)
|
||
|
||
def forward(self, pixel_values, patch_embeds):
|
||
batch_size = pixel_values.shape[0]
|
||
# patch_embeds = self.patch_embedding(
|
||
# pixel_values
|
||
# ) # shape = [*, width, grid, grid]
|
||
|
||
|
||
if patch_embeds is not None:
|
||
patch_embeds = patch_embeds
|
||
# print(patch_embeds.shape)
|
||
else:
|
||
patch_embeds = self.patch_embedding(pixel_values)
|
||
# print(111111)
|
||
# shape = [*, width, grid, grid]
|
||
# patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
|
||
|
||
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
|
||
|
||
|
||
class_embeds = self.class_embedding.expand(batch_size, 1, -1)
|
||
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
|
||
|
||
# x = torch.cat([cls_token, x], dim=1)
|
||
embeddings = embeddings + get_abs_pos(self.position_embedding(self.position_ids), embeddings.size(1))
|
||
# embeddings = embeddings + self.position_embedding(self.position_ids)
|
||
return embeddings
|
||
|
||
|
||
class NoTPFeedForward(nn.Module):
|
||
def __init__(
|
||
self,
|
||
cfg,
|
||
dim: int,
|
||
hidden_dim: int,
|
||
):
|
||
super().__init__()
|
||
|
||
self.fc1 = torch.nn.Linear(dim, hidden_dim, bias=True)
|
||
self.fc2 = torch.nn.Linear(hidden_dim, dim, bias=True)
|
||
|
||
def forward(self, x):
|
||
output = self.fc2(quick_gelu(self.fc1(x)))
|
||
return output
|
||
|
||
|
||
# from optimus.flash_attn_interface import flash_attn_qkvpacked_func
|
||
|
||
|
||
# class NoTPAttention(nn.Module):
|
||
# def __init__(self, cfg):
|
||
# super().__init__()
|
||
# self.num_heads = cfg.num_attention_heads
|
||
# self.n_local_heads = cfg.num_attention_heads
|
||
# self.head_dim = cfg.hidden_size // cfg.num_attention_heads
|
||
# self.max_seq_len = cfg.seq_length
|
||
# self.use_flash_attention = cfg.use_flash_attn
|
||
|
||
# self.qkv_proj = torch.nn.Linear(cfg.hidden_size, cfg.hidden_size * 3, bias=True)
|
||
# self.out_proj = torch.nn.Linear(cfg.hidden_size, cfg.hidden_size, bias=True)
|
||
|
||
# # self.core_attention = CoreAttention(cfg, AttnType.self_attn)
|
||
|
||
# self.attn_drop = cfg.attention_dropout
|
||
|
||
# def forward(
|
||
# self,
|
||
# x: torch.Tensor,
|
||
# ):
|
||
# bsz, seqlen, _ = x.shape
|
||
# xqkv = self.qkv_proj(x)
|
||
# xqkv = xqkv.view(bsz, seqlen, 3, self.num_heads, self.head_dim)
|
||
|
||
# if self.use_flash_attention:
|
||
# output = flash_attn_qkvpacked_func(xqkv)
|
||
# output = output.view(bsz, seqlen, -1)
|
||
# else:
|
||
# xq, xk, xv = torch.split(xqkv, 1, dim=2)
|
||
# xq = xq.squeeze(2)
|
||
# xk = xk.squeeze(2)
|
||
# xv = xv.squeeze(2)
|
||
# # xq, xk, xv = xqkv[:, :, 0, ...], xqkv[:, :, 1, ...], xqkv[:, :, 2, ...]
|
||
|
||
# # (B, num_head, S, head_size)
|
||
# xq = xq.permute(0, 2, 1, 3)
|
||
# xk = xk.permute(0, 2, 1, 3)
|
||
# xv = xv.permute(0, 2, 1, 3)
|
||
|
||
# output = torch.nn.functional.scaled_dot_product_attention(xq, xk, xv, attn_mask=None)
|
||
# utput = output.permute(0, 2, 1, 3).view(bsz, seqlen, -1)
|
||
# output = self.out_proj(output)
|
||
# return output
|
||
|
||
|
||
# from optimus.flash_attn_interface import flash_attn_qkvpacked_func
|
||
|
||
|
||
class NoTPAttention(torch.nn.Module):
|
||
def __init__(self, cfg):
|
||
super().__init__()
|
||
self.num_heads = cfg.num_attention_heads
|
||
self.n_local_heads = cfg.num_attention_heads
|
||
self.head_dim = cfg.hidden_size // cfg.num_attention_heads
|
||
self.max_seq_len = cfg.seq_length
|
||
self.use_flash_attention = cfg.use_flash_attn
|
||
|
||
self.qkv_proj = torch.nn.Linear(cfg.hidden_size, cfg.hidden_size * 3, bias=True)
|
||
self.out_proj = torch.nn.Linear(cfg.hidden_size, cfg.hidden_size, bias=True)
|
||
|
||
# self.core_attention = CoreAttention(cfg, AttnType.self_attn)
|
||
|
||
self.attn_drop = cfg.attention_dropout
|
||
|
||
def forward(
|
||
self,
|
||
x: torch.Tensor,
|
||
):
|
||
bsz, seqlen, _ = x.shape
|
||
xqkv = self.qkv_proj(x)
|
||
xqkv = xqkv.view(bsz, seqlen, 3, self.num_heads, self.head_dim)
|
||
|
||
if self.use_flash_attention:
|
||
output = flash_attn_qkvpacked_func(xqkv)
|
||
output = output.view(bsz, seqlen, -1)
|
||
# xq, xk, xv = torch.split(xqkv, 1, dim=2)
|
||
# xq = xq.squeeze(2)
|
||
# xk = xk.squeeze(2)
|
||
# xv = xv.squeeze(2)
|
||
# # xq, xk, xv = xqkv[:, :, 0, ...], xqkv[:, :, 1, ...], xqkv[:, :, 2, ...]
|
||
|
||
# # (B, num_head, S, head_size)
|
||
# xq = xq.permute(0, 2, 1, 3)
|
||
# xk = xk.permute(0, 2, 1, 3)
|
||
# xv = xv.permute(0, 2, 1, 3)
|
||
# # with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=False):
|
||
# output = torch.nn.functional.scaled_dot_product_attention(xq, xk, xv, attn_mask=None)
|
||
# output = output.permute(0, 2, 1, 3).reshape(bsz, seqlen, -1)
|
||
# output = output.permute(0, 2, 1, 3).contiguous().view(bsz, seqlen, -1)
|
||
else:
|
||
# output = flash_attn_qkvpacked_func(xqkv)
|
||
xq, xk, xv = torch.split(xqkv, 1, dim=2)
|
||
xq = xq.squeeze(2)
|
||
xk = xk.squeeze(2)
|
||
xv = xv.squeeze(2)
|
||
# xq, xk, xv = xqkv[:, :, 0, ...], xqkv[:, :, 1, ...], xqkv[:, :, 2, ...]
|
||
|
||
# (B, num_head, S, head_size)
|
||
xq = xq.permute(0, 2, 1, 3)
|
||
xk = xk.permute(0, 2, 1, 3)
|
||
xv = xv.permute(0, 2, 1, 3)
|
||
# with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=False):
|
||
output = torch.nn.functional.scaled_dot_product_attention(xq, xk, xv, attn_mask=None)
|
||
output = output.permute(0, 2, 1, 3).reshape(bsz, seqlen, -1)
|
||
output = self.out_proj(output)
|
||
return output
|
||
|
||
class NoTPTransformerBlock(nn.Module):
|
||
def __init__(self, cfg, layer_id: int, multiple_of=256):
|
||
super().__init__()
|
||
|
||
self.n_heads = cfg.num_attention_heads
|
||
self.dim = cfg.hidden_size
|
||
self.head_dim = cfg.hidden_size // cfg.num_attention_heads
|
||
self.self_attn = NoTPAttention(cfg)
|
||
self.mlp = NoTPFeedForward(
|
||
cfg, dim=cfg.hidden_size, hidden_dim=cfg.ffn_hidden_size
|
||
)
|
||
self.layer_id = layer_id
|
||
self.layer_norm1 = torch.nn.LayerNorm(
|
||
cfg.hidden_size, eps=cfg.layernorm_epsilon
|
||
)
|
||
self.layer_norm2 = torch.nn.LayerNorm(
|
||
cfg.hidden_size, eps=cfg.layernorm_epsilon
|
||
)
|
||
|
||
def forward(self, x: torch.Tensor):
|
||
residual = self.self_attn.forward(self.layer_norm1(x))
|
||
h = x + residual
|
||
out = h + self.mlp.forward(self.layer_norm2(h))
|
||
return out
|
||
|
||
|
||
class NoTPTransformer(nn.Module):
|
||
def __init__(self, cfg):
|
||
super().__init__()
|
||
|
||
self.cfg = cfg
|
||
# self.recompute_list = self.cfg.get("recompute_list", [])
|
||
self.num_layers = cfg.num_layers # _get_num_layers(cfg)
|
||
|
||
self.layers = torch.nn.ModuleList()
|
||
for layer_id in range(self.num_layers):
|
||
self.layers.append(
|
||
NoTPTransformerBlock(
|
||
cfg,
|
||
layer_id + 1,
|
||
)
|
||
)
|
||
|
||
def forward(
|
||
self,
|
||
hidden_states,
|
||
):
|
||
|
||
for lid, layer in enumerate(self.layers):
|
||
# if lid in self.recompute_list:
|
||
# def custom(layer_id):
|
||
# def custom_forward(*args, **kwargs):
|
||
# x_ = self.layers[layer_id](*args, **kwargs)
|
||
# return x_
|
||
|
||
# return custom_forward
|
||
|
||
# assert hidden_states.requires_grad == True, logger.warning(
|
||
# "When using recalculation, the input must have grad fn"
|
||
# )
|
||
# hidden_states = tensor_parallel.checkpoint(
|
||
# custom(lid),
|
||
# False,
|
||
# hidden_states.contiguous()
|
||
# )
|
||
# else:
|
||
hidden_states = layer(hidden_states)
|
||
|
||
return hidden_states
|
||
|
||
|
||
# from megatron.core.tensor_parallel.layers import non_tensor_paralleled, local_dp_reduce, local_dp_scatter
|
||
|
||
class VitModel(nn.Module):
|
||
def __init__(
|
||
self,
|
||
cfg,
|
||
freeze_embed=False,
|
||
freeze_pre_norm=False
|
||
) -> None:
|
||
super().__init__()
|
||
|
||
self.embeddings = CLIPVisionEmbeddings(hidden_size=cfg.hidden_size, image_size=cfg.image_size, patch_size=cfg.patch_size)
|
||
|
||
if freeze_embed:
|
||
for name, param in self.embeddings.named_parameters():
|
||
param.requires_grad = False
|
||
|
||
self.transformer = NoTPTransformer(cfg=cfg)
|
||
|
||
if cfg.get("fp32norm", False):
|
||
logger.info("Load fp32 layernorm for ViT.")
|
||
self.pre_layrnorm = LayerNormfp32(
|
||
cfg.hidden_size,
|
||
eps=cfg.get("pre_layernorm_epsilon", 1e-5),
|
||
)
|
||
else:
|
||
self.pre_layrnorm = torch.nn.LayerNorm(
|
||
cfg.hidden_size,
|
||
eps=cfg.get("pre_layernorm_epsilon", 1e-5),
|
||
)
|
||
|
||
# self.pre_layrnorm = RMSNorm(
|
||
# cfg.hidden_size,
|
||
# eps=cfg.get("pre_layernorm_epsilon", 1e-5),
|
||
# sequence_parallel=False,
|
||
# use_fp32=True,
|
||
# use_optimus=True,
|
||
# )
|
||
|
||
if freeze_pre_norm:
|
||
for name, param in self.pre_layrnorm.named_parameters():
|
||
param.requires_grad = False
|
||
|
||
for p in self.parameters():
|
||
p.micro_dp = True
|
||
|
||
def set_input_tensor(self, input_tensor):
|
||
if not isinstance(input_tensor, list):
|
||
input_tensor = [input_tensor]
|
||
self.transformer.set_input_tensor(input_tensor[0])
|
||
|
||
def __str__(self) -> str:
|
||
return "open_clip"
|
||
|
||
def forward(
|
||
self,
|
||
x,
|
||
patch_embeds
|
||
):
|
||
x = self.embeddings(x, patch_embeds)
|
||
hidden_states = self.pre_layrnorm(x)
|
||
|
||
# hidden_states, dis = local_dp_scatter(hidden_states)
|
||
output = self.transformer(hidden_states)
|
||
|
||
# output = local_dp_reduce(output, dis)
|
||
|
||
return output
|
||
|
||
|
||
vit_model_cfg = adict(
|
||
num_layers=24,
|
||
hidden_size=1024,
|
||
num_heads = 16,
|
||
num_attention_heads=16,
|
||
ffn_hidden_size=4096,
|
||
seq_length=256,
|
||
max_position_embeddings=256,
|
||
use_flash_attn=False,
|
||
understand_projector_stride=2,
|
||
hidden_dropout = 0.0,
|
||
attention_dropout = 0.0,
|
||
no_persist_layer_norm = False,
|
||
layernorm_epsilon = 1e-5,
|
||
pre_layernorm_epsilon = 1e-5,
|
||
image_size = 224,
|
||
patch_size = 14,
|
||
recompute_list = []
|
||
)
|
||
|
||
def build_clip_l():
|
||
return VitModel(
|
||
cfg=vit_model_cfg,
|
||
freeze_embed=False,
|
||
freeze_pre_norm=False,
|
||
)
|
||
|
||
|
||
if __name__ == '__main__':
|
||
|
||
|
||
from mmgpt.model.vision_encoder.sam_b import build_sam_vit_b
|
||
|
||
|
||
|
||
vit_model_cfg = adict(
|
||
num_layers=24,
|
||
hidden_size=1024,
|
||
num_attention_heads=16,
|
||
ffn_hidden_size=4096,
|
||
seq_length=256,
|
||
max_position_embeddings=256,
|
||
use_flash_attn=False,
|
||
understand_projector_stride=2,
|
||
hidden_dropout = 0.0,
|
||
attention_dropout = 0.0,
|
||
no_persist_layer_norm = False,
|
||
layernorm_epsilon = 1e-5,
|
||
pre_layernorm_epsilon = 1e-5,
|
||
image_size = 224,
|
||
patch_size = 14,
|
||
recompute_list = []
|
||
)
|
||
|
||
sam_model = build_sam_vit_b()
|
||
|
||
|
||
vision_model = VitModel(
|
||
cfg=vit_model_cfg,
|
||
freeze_embed=False,
|
||
freeze_pre_norm=False,
|
||
)
|
||
|
||
# model = VitModel(1344)
|
||
# x = torch.zeros(2, 3, 224, 224)
|
||
x = torch.zeros(2, 3, 1024, 1024)
|
||
|
||
|
||
with torch.no_grad():
|
||
# y = vision_model(x)
|
||
patch_embed = sam_model(x)
|
||
print(patch_embed.shape)
|
||
y = vision_model(x, patch_embed)
|
||
print(y.shape)
|
||
|
||
image_feature = torch.add(y[:, 1:], patch_embed.flatten(2).permute(0, 2, 1))
|
||
|
||
print(image_feature.shape)
|