239 lines
7.6 KiB
Markdown
239 lines
7.6 KiB
Markdown
<!-- markdownlint-disable first-line-h1 -->
|
||
<!-- markdownlint-disable html -->
|
||
<!-- markdownlint-disable no-duplicate-header -->
|
||
|
||
|
||
<div align="center">
|
||
<img src="assets/logo.svg" width="60%" alt="DeepSeek AI" />
|
||
</div>
|
||
|
||
|
||
<hr>
|
||
<div align="center">
|
||
<a href="https://www.deepseek.com/" target="_blank">
|
||
<img alt="Homepage" src="assets/badge.svg" />
|
||
</a>
|
||
<a href="https://huggingface.co/deepseek-ai/DeepSeek-OCR" target="_blank">
|
||
<img alt="Hugging Face" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-DeepSeek%20AI-ffc107?color=ffc107&logoColor=white" />
|
||
</a>
|
||
|
||
</div>
|
||
|
||
<div align="center">
|
||
|
||
<a href="https://discord.gg/Tc7c45Zzu5" target="_blank">
|
||
<img alt="Discord" src="https://img.shields.io/badge/Discord-DeepSeek%20AI-7289da?logo=discord&logoColor=white&color=7289da" />
|
||
</a>
|
||
<a href="https://twitter.com/deepseek_ai" target="_blank">
|
||
<img alt="Twitter Follow" src="https://img.shields.io/badge/Twitter-deepseek_ai-white?logo=x&logoColor=white" />
|
||
</a>
|
||
|
||
</div>
|
||
|
||
|
||
|
||
<p align="center">
|
||
<a href="https://huggingface.co/deepseek-ai/DeepSeek-OCR"><b>📥 Model Download</b></a> |
|
||
<a href="https://github.com/deepseek-ai/DeepSeek-OCR/blob/main/DeepSeek_OCR_paper.pdf"><b>📄 Paper Link</b></a> |
|
||
<a href="https://arxiv.org/abs/2510.18234"><b>📄 Arxiv Paper Link</b></a> |
|
||
</p>
|
||
|
||
<h2>
|
||
<p align="center">
|
||
<a href="">DeepSeek-OCR: Contexts Optical Compression</a>
|
||
</p>
|
||
</h2>
|
||
|
||
<p align="center">
|
||
<img src="assets/fig1.png" style="width: 1000px" align=center>
|
||
</p>
|
||
<p align="center">
|
||
<a href="">Explore the boundaries of visual-text compression.</a>
|
||
</p>
|
||
|
||
## Release
|
||
- [2025/10/23]🚀🚀🚀 DeepSeek-OCR is now officially supported in upstream [vLLM](https://docs.vllm.ai/projects/recipes/en/latest/DeepSeek/DeepSeek-OCR.html#installing-vllm). Thanks to the [vLLM](https://github.com/vllm-project/vllm) team for their help.
|
||
- [2025/10/20]🚀🚀🚀 We release DeepSeek-OCR, a model to investigate the role of vision encoders from an LLM-centric viewpoint.
|
||
|
||
## Contents
|
||
- [Install](#install)
|
||
- [vLLM Inference](#vllm-inference)
|
||
- [Transformers Inference](#transformers-inference)
|
||
|
||
|
||
|
||
|
||
|
||
## Install
|
||
>Our environment is cuda11.8+torch2.6.0.
|
||
1. Clone this repository and navigate to the DeepSeek-OCR folder
|
||
```bash
|
||
git clone https://github.com/deepseek-ai/DeepSeek-OCR.git
|
||
```
|
||
2. Conda
|
||
```Shell
|
||
conda create -n deepseek-ocr python=3.12.9 -y
|
||
conda activate deepseek-ocr
|
||
```
|
||
3. Packages
|
||
|
||
- download the vllm-0.8.5 [whl](https://github.com/vllm-project/vllm/releases/tag/v0.8.5)
|
||
```Shell
|
||
pip install torch==2.6.0 torchvision==0.21.0 torchaudio==2.6.0 --index-url https://download.pytorch.org/whl/cu118
|
||
pip install vllm-0.8.5+cu118-cp38-abi3-manylinux1_x86_64.whl
|
||
pip install -r requirements.txt
|
||
pip install flash-attn==2.7.3 --no-build-isolation
|
||
```
|
||
**Note:** if you want vLLM and transformers codes to run in the same environment, you don't need to worry about this installation error like: vllm 0.8.5+cu118 requires transformers>=4.51.1
|
||
|
||
## vLLM-Inference
|
||
- VLLM:
|
||
>**Note:** change the INPUT_PATH/OUTPUT_PATH and other settings in the DeepSeek-OCR-master/DeepSeek-OCR-vllm/config.py
|
||
```Shell
|
||
cd DeepSeek-OCR-master/DeepSeek-OCR-vllm
|
||
```
|
||
1. image: streaming output
|
||
```Shell
|
||
python run_dpsk_ocr_image.py
|
||
```
|
||
2. pdf: concurrency ~2500tokens/s(an A100-40G)
|
||
```Shell
|
||
python run_dpsk_ocr_pdf.py
|
||
```
|
||
3. batch eval for benchmarks
|
||
```Shell
|
||
python run_dpsk_ocr_eval_batch.py
|
||
```
|
||
|
||
**[2025/10/23] The version of upstream [vLLM](https://docs.vllm.ai/projects/recipes/en/latest/DeepSeek/DeepSeek-OCR.html#installing-vllm):**
|
||
|
||
```shell
|
||
uv venv
|
||
source .venv/bin/activate
|
||
# Until v0.11.1 release, you need to install vLLM from nightly build
|
||
uv pip install -U vllm --pre --extra-index-url https://wheels.vllm.ai/nightly
|
||
```
|
||
|
||
```python
|
||
from vllm import LLM, SamplingParams
|
||
from vllm.model_executor.models.deepseek_ocr import NGramPerReqLogitsProcessor
|
||
from PIL import Image
|
||
|
||
# Create model instance
|
||
llm = LLM(
|
||
model="deepseek-ai/DeepSeek-OCR",
|
||
enable_prefix_caching=False,
|
||
mm_processor_cache_gb=0,
|
||
logits_processors=[NGramPerReqLogitsProcessor]
|
||
)
|
||
|
||
# Prepare batched input with your image file
|
||
image_1 = Image.open("path/to/your/image_1.png").convert("RGB")
|
||
image_2 = Image.open("path/to/your/image_2.png").convert("RGB")
|
||
prompt = "<image>\nFree OCR."
|
||
|
||
model_input = [
|
||
{
|
||
"prompt": prompt,
|
||
"multi_modal_data": {"image": image_1}
|
||
},
|
||
{
|
||
"prompt": prompt,
|
||
"multi_modal_data": {"image": image_2}
|
||
}
|
||
]
|
||
|
||
sampling_param = SamplingParams(
|
||
temperature=0.0,
|
||
max_tokens=8192,
|
||
# ngram logit processor args
|
||
extra_args=dict(
|
||
ngram_size=30,
|
||
window_size=90,
|
||
whitelist_token_ids={128821, 128822}, # whitelist: <td>, </td>
|
||
),
|
||
skip_special_tokens=False,
|
||
)
|
||
# Generate output
|
||
model_outputs = llm.generate(model_input, sampling_param)
|
||
|
||
# Print output
|
||
for output in model_outputs:
|
||
print(output.outputs[0].text)
|
||
```
|
||
## Transformers-Inference
|
||
- Transformers
|
||
```python
|
||
from transformers import AutoModel, AutoTokenizer
|
||
import torch
|
||
import os
|
||
os.environ["CUDA_VISIBLE_DEVICES"] = '0'
|
||
model_name = 'deepseek-ai/DeepSeek-OCR'
|
||
|
||
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
||
model = AutoModel.from_pretrained(model_name, _attn_implementation='flash_attention_2', trust_remote_code=True, use_safetensors=True)
|
||
model = model.eval().cuda().to(torch.bfloat16)
|
||
|
||
# prompt = "<image>\nFree OCR. "
|
||
prompt = "<image>\n<|grounding|>Convert the document to markdown. "
|
||
image_file = 'your_image.jpg'
|
||
output_path = 'your/output/dir'
|
||
|
||
res = model.infer(tokenizer, prompt=prompt, image_file=image_file, output_path = output_path, base_size = 1024, image_size = 640, crop_mode=True, save_results = True, test_compress = True)
|
||
```
|
||
or you can
|
||
```Shell
|
||
cd DeepSeek-OCR-master/DeepSeek-OCR-hf
|
||
python run_dpsk_ocr.py
|
||
```
|
||
## Support-Modes
|
||
The current open-source model supports the following modes:
|
||
- Native resolution:
|
||
- Tiny: 512×512 (64 vision tokens)✅
|
||
- Small: 640×640 (100 vision tokens)✅
|
||
- Base: 1024×1024 (256 vision tokens)✅
|
||
- Large: 1280×1280 (400 vision tokens)✅
|
||
- Dynamic resolution
|
||
- Gundam: n×640×640 + 1×1024×1024 ✅
|
||
|
||
## Prompts examples
|
||
```python
|
||
# document: <image>\n<|grounding|>Convert the document to markdown.
|
||
# other image: <image>\n<|grounding|>OCR this image.
|
||
# without layouts: <image>\nFree OCR.
|
||
# figures in document: <image>\nParse the figure.
|
||
# general: <image>\nDescribe this image in detail.
|
||
# rec: <image>\nLocate <|ref|>xxxx<|/ref|> in the image.
|
||
# '先天下之忧而忧'
|
||
```
|
||
|
||
|
||
## Visualizations
|
||
<table>
|
||
<tr>
|
||
<td><img src="assets/show1.jpg" style="width: 500px"></td>
|
||
<td><img src="assets/show2.jpg" style="width: 500px"></td>
|
||
</tr>
|
||
<tr>
|
||
<td><img src="assets/show3.jpg" style="width: 500px"></td>
|
||
<td><img src="assets/show4.jpg" style="width: 500px"></td>
|
||
</tr>
|
||
</table>
|
||
|
||
|
||
## Acknowledgement
|
||
|
||
We would like to thank [Vary](https://github.com/Ucas-HaoranWei/Vary/), [GOT-OCR2.0](https://github.com/Ucas-HaoranWei/GOT-OCR2.0/), [MinerU](https://github.com/opendatalab/MinerU), [PaddleOCR](https://github.com/PaddlePaddle/PaddleOCR), [OneChart](https://github.com/LingyvKong/OneChart), [Slow Perception](https://github.com/Ucas-HaoranWei/Slow-Perception) for their valuable models and ideas.
|
||
|
||
We also appreciate the benchmarks: [Fox](https://github.com/ucaslcl/Fox), [OminiDocBench](https://github.com/opendatalab/OmniDocBench).
|
||
|
||
## Citation
|
||
|
||
```bibtex
|
||
@article{wei2025deepseek,
|
||
title={DeepSeek-OCR: Contexts Optical Compression},
|
||
author={Wei, Haoran and Sun, Yaofeng and Li, Yukun},
|
||
journal={arXiv preprint arXiv:2510.18234},
|
||
year={2025}
|
||
}
|