Update README.md
This commit is contained in:
59
README.md
59
README.md
@ -52,7 +52,7 @@
|
|||||||
</p>
|
</p>
|
||||||
|
|
||||||
## Release
|
## Release
|
||||||
- [2025/10/20]🚀🚀🚀 DeepSeek-OCR is now officially supported in upstream [vLLM](https://docs.vllm.ai/projects/recipes/en/latest/DeepSeek/DeepSeek-OCR.html#installing-vllm). Thanks to the [vLLM](https://github.com/vllm-project/vllm) team for their help.
|
- [2025/10/23]🚀🚀🚀 DeepSeek-OCR is now officially supported in upstream [vLLM](https://docs.vllm.ai/projects/recipes/en/latest/DeepSeek/DeepSeek-OCR.html#installing-vllm). Thanks to the [vLLM](https://github.com/vllm-project/vllm) team for their help.
|
||||||
- [2025/10/20]🚀🚀🚀 We release DeepSeek-OCR, a model to investigate the role of vision encoders from an LLM-centric viewpoint.
|
- [2025/10/20]🚀🚀🚀 We release DeepSeek-OCR, a model to investigate the role of vision encoders from an LLM-centric viewpoint.
|
||||||
|
|
||||||
## Contents
|
## Contents
|
||||||
@ -104,6 +104,63 @@ python run_dpsk_ocr_pdf.py
|
|||||||
```Shell
|
```Shell
|
||||||
python run_dpsk_ocr_eval_batch.py
|
python run_dpsk_ocr_eval_batch.py
|
||||||
```
|
```
|
||||||
|
|
||||||
|
**[2025/10/23] The version of upstream [vLLM](https://docs.vllm.ai/projects/recipes/en/latest/DeepSeek/DeepSeek-OCR.html#installing-vllm):**
|
||||||
|
|
||||||
|
```shell
|
||||||
|
uv venv
|
||||||
|
source .venv/bin/activate
|
||||||
|
# Until v0.11.1 release, you need to install vLLM from nightly build
|
||||||
|
uv pip install -U vllm --pre --extra-index-url https://wheels.vllm.ai/nightly
|
||||||
|
```
|
||||||
|
|
||||||
|
```python
|
||||||
|
from vllm import LLM, SamplingParams
|
||||||
|
from vllm.model_executor.models.deepseek_ocr import NGramPerReqLogitsProcessor
|
||||||
|
from PIL import Image
|
||||||
|
|
||||||
|
# Create model instance
|
||||||
|
llm = LLM(
|
||||||
|
model="deepseek-ai/DeepSeek-OCR",
|
||||||
|
enable_prefix_caching=False,
|
||||||
|
mm_processor_cache_gb=0,
|
||||||
|
logits_processors=[NGramPerReqLogitsProcessor]
|
||||||
|
)
|
||||||
|
|
||||||
|
# Prepare batched input with your image file
|
||||||
|
image_1 = Image.open("path/to/your/image_1.png").convert("RGB")
|
||||||
|
image_2 = Image.open("path/to/your/image_2.png").convert("RGB")
|
||||||
|
prompt = "<image>\nFree OCR."
|
||||||
|
|
||||||
|
model_input = [
|
||||||
|
{
|
||||||
|
"prompt": prompt,
|
||||||
|
"multi_modal_data": {"image": image_1}
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"prompt": prompt,
|
||||||
|
"multi_modal_data": {"image": image_2}
|
||||||
|
}
|
||||||
|
]
|
||||||
|
|
||||||
|
sampling_param = SamplingParams(
|
||||||
|
temperature=0.0,
|
||||||
|
max_tokens=8192,
|
||||||
|
# ngram logit processor args
|
||||||
|
extra_args=dict(
|
||||||
|
ngram_size=30,
|
||||||
|
window_size=90,
|
||||||
|
whitelist_token_ids={128821, 128822}, # whitelist: <td>, </td>
|
||||||
|
),
|
||||||
|
skip_special_tokens=False,
|
||||||
|
)
|
||||||
|
# Generate output
|
||||||
|
model_outputs = llm.generate(model_input, sampling_param)
|
||||||
|
|
||||||
|
# Print output
|
||||||
|
for output in model_outputs:
|
||||||
|
print(output.outputs[0].text)
|
||||||
|
```
|
||||||
## Transformers-Inference
|
## Transformers-Inference
|
||||||
- Transformers
|
- Transformers
|
||||||
```python
|
```python
|
||||||
|
|||||||
Reference in New Issue
Block a user